Here’s a structured approach for your Age Detection Model using pandas, seaborn, and scikit-learn: 1. Data Inspection & Cleaning python Copy code import pandas as pd # Load dataset df = pd.read_csv("") # Inspect dataset print(()) print(()) print(().sum()) # Check for missing values # Handle missing values (example: filling with median values) ((), inplace=True) # Check and remove duplicate rows df.drop_duplicates(inplace=True) 2. Data Visualization python Copy code import seaborn as sns import as plt # Age distribution (df["age"], bins=20, kde=True) () # Pairplot for relationships (if multiple features exist) (df, hue="age") () 3. Train-Test Split & Encoding python Copy code from sklearn.model_selection import train_test_split from impo...
Keyword: Machine Learning
Delivery Time: 2 days left days
Price: $340.0
Data Mining Data Processing Machine Learning (ML) Python Software Architecture
this is our abstract:- unique system that seeks to improve student engagement in distance learning using facial expression recognition and natural language processing (NLP) with sentiment analysis. Among them, one of the significant issues as online education progresse...
View JobNuestro cliente, institución Educativa con presencia en todo México y otros países, busca emprender el viaje del adopción y explotación de la inteligencia artificial. Para esto ha dispuesto empezar automatizando su proceso de Ventas, el cual debe funcionar en 2 fr...
View Job